Dual boundary complexes of Betti moduli spaces associated to Legendrian knots

Tao Su, YMSC

April 21, 2022

Ref: arXiv:2109.01645

Tao Su, YMSC

Dual boundary complexes of Betti moduli spaces associated to Legendrian knots

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Htpy type conj.	Moduli of constructible sheaves	Betti moduli spaces ass. to Legendrian knots	(Prove main thm via augmentations)

イロト イロト イヨト イヨト

Outline

1 Htpy type conj.

- 2 Moduli of constructible sheaves
- 3 Betti moduli spaces ass. to Legendrian knots
- 4 (Prove main thm via augmentations)

Tao Su, YMSC

Dual boundary complexes

- X: smooth quasi-projective variety over \mathbb{C} . Log compactification: smooth projective \overline{X} with snc boundary divisor $\partial X = \overline{X} \setminus X$.
- Resolution of singularities → ∃X. May also assume: the irreducible components of ∂X have connected intersections.
- Dual boundary complex D∂X: a simplicial complex s.t.:
 vertices ↔ irreducible components of ∂X;
 k vertices anone a (k = 1) aimplex iff the corresponding
 - k vertices spans a (k 1)-simplex iff the corresponding components have non-empty intersection.

Dual boundary complexes

- X: smooth quasi-projective variety over \mathbb{C} . Log compactification: smooth projective \overline{X} with snc boundary divisor $\partial X = \overline{X} \setminus X$.
- Resolution of singularities → ∃X. May also assume: the irreducible components of ∂X have connected intersections.
- **Dual boundary complex** $\mathbb{D}\partial X$: a simplicial complex s.t.:
 - vertices \leftrightarrow irreducible components of ∂X ;
 - k vertices spans a (k 1)-simplex iff the corresponding components have non-empty intersection.

Example: $X = (\mathbb{C}^*)^2$

■ Log compactification 1:
$$X \hookrightarrow X_1 = \mathbb{C}P_{[x:y:z]}^2$$
 with
 $\partial_1 X = X_1 \setminus X = \{x = 0\} \cup \{y = 0\} \cup \{z = 0\}.$
 $\Rightarrow \mathbb{D}\partial_1 X = \text{triangle} (\simeq S^1).$

■ Log compactification 2: $X \hookrightarrow X_2 = \mathbb{C}P_{[a:b]}^1 \times \mathbb{C}P_{[c:d]}^1$ with $\partial_2 X = X_2 \setminus X = \{a = 0\} \cup \{b = 0\} \cup \{c = 0\} \cup \{d = 0\}.$ $\Rightarrow \mathbb{D}\partial_2 X = \text{square} (\simeq S^1).$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

Tao Su, YMSC

Example: $X = (\mathbb{C}^*)^2$

Log compactification 1:
$$X \hookrightarrow X_1 = \mathbb{C}P^2_{[x:y:z]}$$
 with
 $\partial_1 X = X_1 \setminus X = \{x = 0\} \cup \{y = 0\} \cup \{z = 0\}.$
 $\Rightarrow \mathbb{D}\partial_1 X = \text{triangle} (\simeq S^1).$

• Log compactification 2: $X \hookrightarrow X_2 = \mathbb{C}P^1_{[a:b]} \times \mathbb{C}P^1_{[c:d]}$ with $\partial_2 X = X_2 \setminus X = \{a = 0\} \cup \{b = 0\} \cup \{c = 0\} \cup \{d = 0\}.$ $\Rightarrow \mathbb{D}\partial_2 X = \text{square} (\simeq S^1).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Tao Su, YMSC

Htpy type conj.	Moduli of constructible sheaves	Betti moduli spaces ass. to Legendrian knots	(Prove main thm via augmentations)
0000000			

Properties

■ E.g.: $\mathbb{D}\partial\mathbb{C}^* \sim S^0$; $\mathbb{D}\partial\mathbb{C} \sim pt$; $\mathbb{D}\partial(X \times Y) \sim \mathbb{D}\partial X * \mathbb{D}\partial Y$. \rightsquigarrow $\mathbb{D}\partial(\mathbb{C}^*)^d \sim S^{d-1}$, and $\mathbb{D}\partial(\mathbb{C} \times Y) \sim pt$.

• Danilov 75: The homotopy type of $\mathbb{D}\partial X$ is an invariant of X.

■ Hacking 08, Payne 13?: The reduced homology of D∂X captures information of the weight filtration on H[•](X):

 $\widetilde{H}_{i-1}(\mathbb{D}\partial X) \simeq \mathrm{Gr}_{2d}^W H^{2d-i}(X),$

where $d = \dim_{\mathbb{C}} X$.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Tao Su, YMSC

Properties

- E.g.: $\mathbb{D}\partial\mathbb{C}^* \sim S^0$; $\mathbb{D}\partial\mathbb{C} \sim pt$; $\mathbb{D}\partial(X \times Y) \sim \mathbb{D}\partial X * \mathbb{D}\partial Y$... $\mathbb{D}\partial(\mathbb{C}^*)^d \sim S^{d-1}$, and $\mathbb{D}\partial(\mathbb{C} \times Y) \sim pt$.
- Danilov 75: The homotopy type of $\mathbb{D}\partial X$ is an invariant of X.
- Hacking 08, Payne 13?: The reduced homology of D∂X captures information of the weight filtration on H[•](X):

$$\widetilde{H}_{i-1}(\mathbb{D}\partial X)\simeq \operatorname{Gr}_{2d}^W H^{2d-i}(X),$$

where $d = \dim_{\mathbb{C}} X$.

・ロマ・西マ・山田マ 白マ ろくら

Tao Su, YMSC

Properties

- E.g.: $\mathbb{D}\partial\mathbb{C}^* \sim S^0$; $\mathbb{D}\partial\mathbb{C} \sim pt$; $\mathbb{D}\partial(X \times Y) \sim \mathbb{D}\partial X * \mathbb{D}\partial Y$. \longrightarrow $\mathbb{D}\partial(\mathbb{C}^*)^d \sim S^{d-1}$, and $\mathbb{D}\partial(\mathbb{C} \times Y) \sim pt$.
- Danilov 75: The homotopy type of $\mathbb{D}\partial X$ is an invariant of X.
- Hacking 08, Payne 13?: The reduced homology of D∂X captures information of the weight filtration on H[•](X):

$$\tilde{H}_{i-1}(\mathbb{D}\partial X)\simeq \mathrm{Gr}^W_{2d}H^{2d-i}(X),$$

イロト イロト イヨト イヨト

э.

where $d = \dim_{\mathbb{C}} X$.

Tao Su, YMSC

Dual boundary complexes of Betti moduli spaces

- C: Riemann surface (with punctures).
 G: reductive algebraic group over C.
- *M_B* = *M_B*(*C*, *G*; ...): (smooth) Betti moduli space (or character variety) of *G*-local systems over *C*.

Homotopy type conjecture (Katzarkov-Noll-Pandit-Simpson15)

 \exists homotopy equivalence $\mathbb{D}\partial \mathcal{M}_B \sim S^{d-1}$, $d = \dim_{\mathbb{C}} \mathcal{M}_B$.

- Simpson 16: true for $G = SL_2(\mathbb{C})$ and $C = P^1 \setminus \{y_1, \ldots, y_k\}$.
- Mauri-Mazzon-Stevenson 18: true for $G = GL_n(\mathbb{C})$, $SL_n(\mathbb{C})$ and g(C) = 1 (singular).

Dual boundary complexes of Betti moduli spaces

- C: Riemann surface (with punctures).
 G: reductive algebraic group over ℂ.
 - Λ reductive algebraic group over \mathbb{C} .
- *M_B* = *M_B*(*C*, *G*; ...): (smooth) Betti moduli space (or character variety) of *G*-local systems over *C*.

Homotopy type conjecture (Katzarkov-Noll-Pandit-Simpson15)

 $\exists \text{ homotopy equivalence } \mathbb{D}\partial \mathcal{M}_B \sim S^{d-1}, d = \dim_{\mathbb{C}} \mathcal{M}_B.$

- Simpson 16: true for $G = SL_2(\mathbb{C})$ and $C = P^1 \setminus \{y_1, \ldots, y_k\}$.
- Mauri-Mazzon-Stevenson 18: true for $G = GL_n(\mathbb{C})$, $SL_n(\mathbb{C})$ and g(C) = 1 (singular).

Dual boundary complexes of Betti moduli spaces

- C: Riemann surface (with punctures).
 G: reductive algebraic group over C.
- *M_B* = *M_B*(*C*, *G*; ...): (smooth) Betti moduli space (or character variety) of *G*-local systems over *C*.

Homotopy type conjecture (Katzarkov-Noll-Pandit-Simpson15)

 \exists homotopy equivalence $\mathbb{D}\partial \mathcal{M}_B \sim S^{d-1}$, $d = \dim_{\mathbb{C}} \mathcal{M}_B$.

- Simpson 16: true for $G = SL_2(\mathbb{C})$ and $C = P^1 \setminus \{y_1, \ldots, y_k\}$.
- Mauri-Mazzon-Stevenson 18: true for $G = GL_n(\mathbb{C})$, $SL_n(\mathbb{C})$ and g(C) = 1 (singular).

Preview for main result

- $C = \mathbb{C}P^1$ with one puncture ∞ . $G = GL_n(\mathbb{C})$.
- β: n-strand positive braid → specifies the irregularity singularity type at ∞ by a Stokes Legendrian knot (βΔ²)°.
- *M_B* := *M*₁(ℂ*P*¹ \ {∞}, (βΔ²)°): associated Betti moduli space/wild character variety.

Theorem (S 21)

The homotopy type conjecture holds for \mathcal{M}_{B} :

$$\mathbb{D}\partial \mathcal{M}_B \sim S^{d-1}, d = \dim_{\mathbb{C}} \mathcal{M}_B.$$

・ロト・日本・日本・日本・日本・ 日本・ クタイ

Tao Su, YMSC

Preview for main result

- $C = \mathbb{C}P^1$ with one puncture ∞ . $G = GL_n(\mathbb{C})$.
- β: n-strand positive braid → specifies the irregularity singularity type at ∞ by a Stokes Legendrian knot (βΔ²)°.
- *M_B* := *M*₁(ℂ*P*¹ \ {∞}, (βΔ²)°): associated Betti moduli space/wild character variety.

Theorem (S 21)

The homotopy type conjecture holds for \mathcal{M}_B :

$$\mathbb{D}\partial \mathcal{M}_B \sim S^{d-1}, d = \dim_{\mathbb{C}} \mathcal{M}_B.$$

Tao Su, YMSC

Dual boundary complexes of Betti moduli spaces associated to Legendrian knots

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Relation with P=W in nonabelian Hodge

- $\mathcal{M}_{Dol} = \mathcal{M}_{Dol}(C, G; ...)$: Dolbeault moduli space of (stable) *G*-Higgs bundles over *C*. Hitchin map: $h : \mathcal{M}_{Dol} \to \mathbb{A}$.
- Nonabelian Hodge (NAH) \rightsquigarrow diffemorphism $\phi : \mathcal{M}_{Dol} \simeq \mathcal{M}_B$ $\Rightarrow \phi^* : H^{\bullet}(\mathcal{M}_B) \simeq H^{\bullet}(\mathcal{M}_{Dol}).$

P=W conjecture (de Cataldo-Hausel-Migliorini 12)

NAH identifies the weight filtration (algebraic geometry) on $H^*(\mathcal{M}_B)$ with the perverse-Leray filtration (topology) on $H^*(\mathcal{M}_{Dol})$ associated to h:

$$\phi^*(W_{2k} = W_{2k+1}) = P_k.$$

■ deCHM 12: true for rank 2 and any genus.

de Cataldo-Maulik-Shen 19: true for any rank and genus 2.

イロト イロト イヨト イヨト

э.

Tao Su, YMSC

Relation with P=W in nonabelian Hodge

- $\mathcal{M}_{Dol} = \mathcal{M}_{Dol}(C, G; ...)$: Dolbeault moduli space of (stable) *G*-Higgs bundles over *C*. Hitchin map: $h : \mathcal{M}_{Dol} \to \mathbb{A}$.
- Nonabelian Hodge (NAH) \rightsquigarrow diffemorphism $\phi : \mathcal{M}_{Dol} \simeq \mathcal{M}_B$ $\Rightarrow \phi^* : H^{\bullet}(\mathcal{M}_B) \simeq H^{\bullet}(\mathcal{M}_{Dol}).$

P=W conjecture (de Cataldo-Hausel-Migliorini 12)

NAH identifies the weight filtration (algebraic geometry) on $H^*(\mathcal{M}_B)$ with the perverse-Leray filtration (topology) on $H^*(\mathcal{M}_{Dol})$ associated to h:

$$\phi^*(W_{2k} = W_{2k+1}) = P_k.$$

deCHM 12: true for rank 2 and any genus.

de Cataldo-Maulik-Shen 19: true for any rank and genus 2.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ □ ▶

Tao Su, YMSC

Prove main thm via augmentations)

Relation with P=W in nonabelian Hodge

Geometric interpretation of P=W conjecture? ~~

Geometric P=W conjecture (Katzarkov-Noll-Pandit-Simpson15)

 \exists htpy eq. $S^{d-1} \sim \mathbb{D}\partial \mathcal{M}_B \Rightarrow$ homotopy-commutative diagram

$$\begin{array}{c} N_{Dol}^{*} \xrightarrow{\simeq} & N_{B}^{*} \\ \downarrow \overline{\mu} & \downarrow \varphi \\ S^{d-1} \xrightarrow{\sim} & \mathbb{D}\partial \mathcal{M}_{B} \end{array}$$

- Top row: NAH near infinity; Bottom row: htyp type conj.
- **h**: Hitchin map near infinity; α : "asymptotic behavior of \mathcal{M}_B near infinity".
- Némethi-Szabó 20: true for Painlevé cases $(G = GL_2(\mathbb{C}), C = \mathbb{C}P^1 \text{ with } (\leq 4) \text{ punctures}).$

Tao Su, YMSC

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへで

Relation with P=W in nonabelian Hodge

Geometric P=W conjecture (Katzarkov-Noll-Pandit-Simpson15)

 $\exists \text{ htpy eq. } S^{d-1} \sim \mathbb{D}\partial \mathcal{M}_B \Rightarrow \text{homotopy-commutative diagram}$

$$\begin{array}{c} N^*_{Dol} \xrightarrow{\simeq} N^*_B \\ \downarrow^{\overline{\mu}} \\ S^{d-1} \xrightarrow{\sim} \mathbb{D} \partial \mathcal{M}_B \end{array}$$

- Top row: NAH near infinity; Bottom row: htyp type conj.
- *h*: Hitchin map near infinity; *α*: "asymptotic behavior of *M_B* near infinity".
- Némethi-Szabó 20: true for Painlevé cases (G = GL₂(ℂ), C = ℂP¹ with (≤ 4) punctures).

Relation with log Calabi-Yau varieties

■ Expect: all smooth Betti moduli spaces are log CY, i.e. ∃ log compactification with anticanonical boundary divisor.

Conjecture (Kontsevich)

The dual boundary complex of any log Calabi-Yau variety is (homotopy equivalent to) a sphere.

- Example: $X = E \times \mathbb{C}^* \hookrightarrow \overline{X} = E \times \mathbb{C}P^1$ with $\partial X = E \times \{0\} + E \times \{\infty\} = -K_{\overline{X}}$. We see $\mathbb{D}\partial X = S^0$
- Kollár-Xu 15: X log CY of dim $\leq 5 \Rightarrow \mathbb{D}\partial X$ is a finite quotient of a sphere.

Relation with log Calabi-Yau varieties

■ Expect: all smooth Betti moduli spaces are log CY, i.e. ∃ log compactification with anticanonical boundary divisor.

Conjecture (Kontsevich)

The dual boundary complex of any log Calabi-Yau variety is (homotopy equivalent to) a sphere.

- Example: $X = E \times \mathbb{C}^* \hookrightarrow \overline{X} = E \times \mathbb{C}P^1$ with $\partial X = E \times \{0\} + E \times \{\infty\} = -K_{\overline{X}}$. We see $\mathbb{D}\partial X = S^0$.
- Kollár-Xu 15: X log CY of dim $\leq 5 \Rightarrow \mathbb{D}\partial X$ is a finite quotient of a sphere.

Constructible sheaves

- *M*: real analytic manifold. (our case: *M* = *C*)
 K: base field (or commutative ring).
- \mathcal{F} : *constructible sheaf* on *M*. I.e. \mathcal{F} is a cochain complex of sheaves of \mathbb{K} -modules over *M* s.t.
 - \exists (nice) stratification $S = \{S_{\alpha}\}$ of M s.t. $\mathcal{H}^{\bullet}(\mathcal{F})|_{S_{\alpha}}$ is locally constant, $\forall \alpha$.
 - H[●](F) is bounded (Hⁱ(F) = 0 for |i| ≫ 0) with perfect stalks (≃ a bounded complex of finite rank projective K-modules).

Constructible sheaves

- *M*: real analytic manifold. (our case: *M* = *C*)
 ℝ: base field (or commutative ring).
- *F*: *constructible sheaf* on *M*. I.e. *F* is a cochain complex of sheaves of K-modules over *M* s.t.
 - ∃ (nice) stratification $S = \{S_{\alpha}\}$ of *M* s.t. $\mathcal{H}^{\bullet}(\mathcal{F})|_{S_{\alpha}}$ is locally constant, $\forall \alpha$.
 - H[•](𝔅) is bounded (ℋⁱ(𝔅) = 0 for |*i*| ≫ 0) with perfect stalks (≃ a bounded complex of finite rank projective K-modules).

 Slogan: "Micro-support captures the codirections along which the local sections fail to propogate".

Definition

Let $x \in M$, and $\xi \in T_x^*M$. Say, $\xi \neq 0$. If \exists a small ball $B_{\epsilon}(x) \subset M$ and a smooth function $f : B_{\epsilon}(x) \to \mathbb{R}$ with f(x) = 0, $df(x) = \xi$, s.t.

$$\mathsf{R}\Gamma(f^{-1}(-\infty,\delta);\mathcal{F}) \xrightarrow{r} \mathsf{R}\Gamma(f^{-1}(-\infty,-\delta);\mathcal{F})$$
(1)

is not a quasi-isomorphism, for some $0 < \delta \ll 1$, we say ξ is characteristic/singular w.r.t. \mathcal{F} .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Tao Su, YMSC

 Slogan: "Micro-support captures the codirections along which the local sections fail to propogate".

Definition

Let $x \in M$, and $\xi \in T_x^*M$. Say, $\xi \neq 0$. If \exists a small ball $B_{\epsilon}(x) \subset M$ and a smooth function $f : B_{\epsilon}(x) \to \mathbb{R}$ with f(x) = 0, $df(x) = \xi$, s.t.

$$\mathsf{R}\Gamma(f^{-1}(-\infty,\delta);\mathcal{F}) \xrightarrow{r} \mathsf{R}\Gamma(f^{-1}(-\infty,-\delta);\mathcal{F})$$
(1)

イロト イロト イヨト イヨト

э.

is not a quasi-isomorphism, for some $0 < \delta \ll 1$, we say ξ is *characteristic/singular* w.r.t. \mathcal{F} .

Tao Su, YMSC

		Betti moduli spaces ass. to Legendrian knots	
00000000	00000	0000	00000000

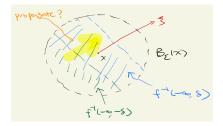


Figure: Propagation of local sections.

Definition (informal)

The micro-support (or singular support) of ${\mathcal F}$ is

 $SS(\mathcal{F}) := \{ singular covectors of \mathcal{F} \} \cup Supp(\mathcal{F}) \subset T^*M. \}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへで

Tao Su, YMSC

Htpy type conj. 00000000	Betti moduli spaces ass. to Legendrian knots	(Prove main thm via augmentations)

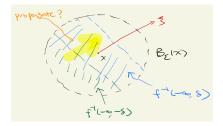


Figure: Propagation of local sections.

Definition (informal)

The micro-support (or singular support) of $\mathcal F$ is

 $SS(\mathcal{F}) := \overline{\{singular covectors of \mathcal{F}\} \cup Supp(\mathcal{F})} \subset T^*M.$

イロト イロト イヨト イヨト

2

Tao Su, YMSC

Fact: SS(F) ⊂ T*M is a conic, closed, (singular) Lagrangian.
 → SS[∞](F) := SS(F) ∩ S*M (micro-support at infinity) is a closed (singular) Legendrian subset, i.e. ∑ p_idq_i|_{(SS[∞](F))sm} = 0.

Definition

 $\Lambda \subset S^*M$ smooth Legendrian. $Sh_{\Lambda}(M; \mathbb{K})$: dg cat. of constructible sheaves \mathcal{F} on M s.t. $SS^{\infty}(\mathcal{F}) \subset \Lambda$, localized at quasi-iso's.

Theorem (Guillermou-Kashiwara-Shapira 12)

The dg category $Sh_{\Lambda}(M; \mathbb{K})$ is a Legendrian isotopy invariant of Λ .

Case of interest: M = C (Riemann surface), $\Lambda \subset S^*C$: Legendrian link. \rightsquigarrow computable Legenrian knot invariants.

イロト イポト イヨト イヨト

3

Tao Su, YMSC

Fact: SS(F) ⊂ T*M is a conic, closed, (singular) Lagrangian.
 → SS[∞](F) := SS(F) ∩ S*M (micro-support at infinity) is a closed (singular) Legendrian subset, i.e. ∑p_idq_i|_{(SS[∞](F))sm} = 0.

Definition

 $\Lambda \subset S^*M$ smooth Legendrian. $Sh_{\Lambda}(M; \mathbb{K})$: dg cat. of constructible sheaves \mathcal{F} on M s.t. $SS^{\infty}(\mathcal{F}) \subset \Lambda$, localized at quasi-iso's.

Theorem (Guillermou-Kashiwara-Shapira 12)

The dg category $Sh_{\Lambda}(M; \mathbb{K})$ is a Legendrian isotopy invariant of Λ .

Case of interest: M = C (Riemann surface), Λ ⊂ S^{*}C: Legendrian link. → computable Legenrian knot invariants.

イロン 不得 とくほう イヨン しほう

Tao Su, YMSC

Fact: SS(F) ⊂ T*M is a conic, closed, (singular) Lagrangian.
 → SS[∞](F) := SS(F) ∩ S*M (micro-support at infinity) is a closed (singular) Legendrian subset, i.e. ∑p_idq_i|_{(SS[∞](F))sm} = 0.

Definition

 $\Lambda \subset S^*M$ smooth Legendrian. $Sh_{\Lambda}(M; \mathbb{K})$: dg cat. of constructible sheaves \mathcal{F} on M s.t. $SS^{\infty}(\mathcal{F}) \subset \Lambda$, localized at quasi-iso's.

Theorem (Guillermou-Kashiwara-Shapira 12)

The dg category $Sh_{\Lambda}(M; \mathbb{K})$ is a Legendrian isotopy invariant of Λ .

Case of interest: M = C (Riemann surface), $\Lambda \subset S^*C$: Legendrian link. \rightsquigarrow computable Legenrian knot invariants.

Tao Su, YMSC

Fact: SS(F) ⊂ T*M is a conic, closed, (singular) Lagrangian.
 → SS[∞](F) := SS(F) ∩ S*M (micro-support at infinity) is a closed (singular) Legendrian subset, i.e. ∑ p_idq_i|_{(SS[∞](F))sm} = 0.

Definition

 $\Lambda \subset S^*M$ smooth Legendrian. $Sh_{\Lambda}(M; \mathbb{K})$: dg cat. of constructible sheaves \mathcal{F} on M s.t. $SS^{\infty}(\mathcal{F}) \subset \Lambda$, localized at quasi-iso's.

Theorem (Guillermou-Kashiwara-Shapira 12)

The dg category $Sh_{\Lambda}(M; \mathbb{K})$ is a Legendrian isotopy invariant of Λ .

■ Case of interest: M = C (Riemann surface), Λ ⊂ S*C: Legendrian link. → computable Legenrian knot invariants.

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Microlocal stalks and microlocal monodromy

Slogan: "Microlocal stalk = the obstruction of the propagation of the local sections along a given (singular) covector".

Definition/Proposition

 $\mathcal{F} \in Sh_{\Lambda}(M; \mathbb{K})$, then $\mathcal{F}|_{(x,\xi)} := \operatorname{Cone}(r)$ in (1) is independent of the *choices* of ϵ, f, δ , called the *microlocal stalk* of \mathcal{F} at (x, ξ) .

Definition/Proposition

∃ a natural dg functor (*microlocal monodromy*) μ mon : $Sh_{\Lambda}(M; \mathbb{K}) \rightarrow \mathcal{Loc}(\Lambda; \mathbb{K})$ (local systems on s t, μ mon(\mathcal{F}), $\mu = \mathcal{F}[\mu, \infty] - \mu(\chi, \xi)]$ for a Maslov potential

Tao Su, YMSC

Microlocal stalks and microlocal monodromy

Slogan: "Microlocal stalk = the obstruction of the propagation of the local sections along a given (singular) covector".

Definition/Proposition

 $\mathcal{F} \in Sh_{\Lambda}(M; \mathbb{K})$, then $\mathcal{F}|_{(x,\xi)} := \operatorname{Cone}(r)$ in (1) is independent of the *choices* of ϵ, f, δ , called the *microlocal stalk* of \mathcal{F} at (x, ξ) .

Definition/Proposition

 \exists a natural dg functor (*microlocal monodromy*)

 μ mon : $Sh_{\Lambda}(M; \mathbb{K}) \to Loc(\Lambda; \mathbb{K})$ (local systems on Λ)

s.t. $\mu \text{mon}(\mathcal{F})_{(x,\xi)} = \mathcal{F}|_{(x,\xi)}[-\mu(x,\xi)]$ for a Maslov potential μ .

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ のへ⊙

Tao Su, YMSC

Microlocal stalks and microlocal monodromy

Slogan: "Microlocal stalk = the obstruction of the propagation of the local sections along a given (singular) covector".

Definition/Proposition

 $\mathcal{F} \in Sh_{\Lambda}(M; \mathbb{K})$, then $\mathcal{F}|_{(x,\xi)} := \operatorname{Cone}(r)$ in (1) is independent of the *choices* of ϵ, f, δ , called the *microlocal stalk* of \mathcal{F} at (x, ξ) .

Definition/Proposition

 \exists a natural dg functor (*microlocal monodromy*)

 $\mu \text{mon} : Sh_{\Lambda}(M; \mathbb{K}) \to Loc(\Lambda; \mathbb{K}) \quad (\text{local systems on } \Lambda)$

s.t. $\mu \text{mon}(\mathcal{F})_{(x,\xi)} = \mathcal{F}|_{(x,\xi)}[-\mu(x,\xi)]$ for a Maslov potential μ .

Prove main thm via augmentations)

イロン イロン イヨン イヨン

Shende-Treumann-Zaslow moduli space

Definition

- The STZ category C₁(M, Λ; K) is the full dg subcategory of Sh_Λ(M; K) consisting of F s.t. F has compact support, and μmon(F) ≃ K is the trivial rank 1 local system on Λ.
- The STZ moduli stack M₁(M, Λ; K) is the (underived) moduli stack of objects in C₁(M, Λ; K).
- The STZ moduli space $\mathcal{M}_1(M, \Lambda; \mathbb{C})$ is the good moduli space [Alper 13] of $\mathfrak{M}_1(M, \Lambda; \mathbb{C})$.

Fact: If $G \cup X$ with X complex affine, G reductive, then the good moduli space of the quotient stack [X/G] is Spec $O(X)^G$.

Tao Su, YMSC

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへで

Shende-Treumann-Zaslow moduli space

Definition

- The STZ category C₁(M, Λ; K) is the full dg subcategory of Sh_Λ(M; K) consisting of F s.t. F has compact support, and μmon(F) ≃ K is the trivial rank 1 local system on Λ.
- The STZ moduli stack M₁(M, Λ; K) is the (underived) moduli stack of objects in C₁(M, Λ; K).
- The STZ moduli space $\mathcal{M}_1(M, \Lambda; \mathbb{C})$ is the good moduli space [Alper 13] of $\mathfrak{M}_1(M, \Lambda; \mathbb{C})$.

Fact: If $G \cup X$ with X complex affine, G reductive, then the good moduli space of the quotient stack [X/G] is Spec $O(X)^G$.

Tao Su, YMSC

イロン イヨン イヨン イヨン ニヨー

Shende-Treumann-Zaslow moduli space

Definition

- The STZ category C₁(M, Λ; K) is the full dg subcategory of Sh_Λ(M; K) consisting of F s.t. F has compact support, and μmon(F) ≃ K is the trivial rank 1 local system on Λ.
- The STZ moduli stack M₁(M, Λ; K) is the (underived) moduli stack of objects in C₁(M, Λ; K).
- The STZ moduli space $\mathcal{M}_1(M, \Lambda; \mathbb{C})$ is the good moduli space [Alper 13] of $\mathfrak{M}_1(M, \Lambda; \mathbb{C})$.
- Fact: If G ∪ X with X complex affine, G reductive, then the good moduli space of the quotient stack [X/G] is Spec O(X)^G.

Tao Su, YMSC

Legendrian knots via braid closures

 β : *n*-strand positive braid \rightsquigarrow 2 closures:

- Rainbow closure: $\beta^{>} \hookrightarrow J^{1}\mathbb{R}_{x} \hookrightarrow S^{*}M$ with $M = \mathbb{R}^{2}_{x,z}$.
- Cylindrical closure: $(\beta \Delta^2)^{\circ} \hookrightarrow S^*M$ with $M = \mathbb{C}P^1 \setminus \{\infty\}$.

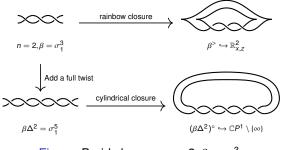


Figure: Braid closure: $n = 2, \beta = \sigma_1^3$.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ■ のへで

Tao Su, YMSC

Betti moduli spaces associated to Legendrian knots

Definition/Proposition

 $\exists \text{ natural isomorphism } \mathcal{M}_1(\mathbb{R}^2_{x,z},\beta^{>};\mathbb{C}) \simeq \mathcal{M}_1(\mathbb{C}P^1 \setminus \{\infty\}, (\beta\Delta^2)^{\circ};\mathbb{C}).$ Denote either by $\mathcal{M}_1(\beta)$ (*Betti moduli space* in main theorem).

- Irregular Riemann-Hilbert → M₁(β) can be viewed as a Betti moduli space/wild character variety associated to C = CP¹ with one irregular singularity at ∞, and G = GL_n(C).
- Recall main theorem: the homotopy type conjecture holds for $\mathcal{M}_B = \mathcal{M}_1(\beta)$: $\mathbb{D}\partial \mathcal{M}_B \sim S^{\dim -1}$.

Betti moduli spaces associated to Legendrian knots

Definition/Proposition

 $\exists \text{ natural isomorphism } \mathcal{M}_1(\mathbb{R}^2_{x,z},\beta^{>};\mathbb{C}) \simeq \mathcal{M}_1(\mathbb{C}P^1 \setminus \{\infty\}, (\beta\Delta^2)^{\circ};\mathbb{C}).$ Denote either by $\mathcal{M}_1(\beta)$ (*Betti moduli space* in main theorem).

- Irregular Riemann-Hilbert → M₁(β) can be viewed as a Betti moduli space/wild character variety associated to C = CP¹ with one irregular singularity at ∞, and G = GL_n(C).
- Recall main theorem: the homotopy type conjecture holds for $\mathcal{M}_B = \mathcal{M}_1(\beta)$: $\mathbb{D}\partial \mathcal{M}_B \sim S^{\dim -1}$.

Betti moduli spaces associated to Legendrian knots

Definition/Proposition

 $\exists \text{ natural isomorphism } \mathcal{M}_1(\mathbb{R}^2_{x,z},\beta^{>};\mathbb{C}) \simeq \mathcal{M}_1(\mathbb{C}P^1 \setminus \{\infty\}, (\beta\Delta^2)^{\circ};\mathbb{C}).$ Denote either by $\mathcal{M}_1(\beta)$ (*Betti moduli space* in main theorem).

- Irregular Riemann-Hilbert → M₁(β) can be viewed as a Betti moduli space/wild character variety associated to C = CP¹ with one irregular singularity at ∞, and G = GL_n(C).
- Recall main theorem: the homotopy type conjecture holds for $\mathcal{M}_B = \mathcal{M}_1(\beta)$: $\mathbb{D}\partial \mathcal{M}_B \sim S^{\dim -1}$.

Combinatorial description via example: $n = 2, \beta = \sigma_1^3$

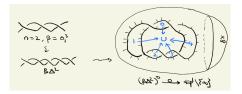


Figure: Braid closure: Q is the associated quiver (blue).

Fact: $\mathcal{F} \in C_1(\mathbb{C}P^1 \setminus \{\infty\}, (\beta \Delta^2)^\circ; \mathbb{K}) \Leftrightarrow F \in \operatorname{Rep}(\mathcal{Q}) \text{ s.t.}$

• (microlocal rank r = 1) have injections $\ell_i : F(i) = \mathbb{K} \hookrightarrow F(U) = \mathbb{K}^2, \forall i \in \mathbb{Z}/5.$

• (micro-support at the crossings) For all $i \in \mathbb{Z}/5$, the images $[\ell_i] := \operatorname{im}(\ell_i)$ and $[\ell_{i+1}]$ are transverse in $F(U) = \mathbb{K}^2$.

Tao Su, YMSC

Combinatorial description via example: $n = 2, \beta = \sigma_1^3$

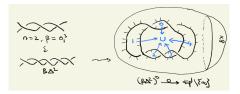


Figure: Braid closure: Q is the associated quiver (blue).

 $\mathsf{Fact:} \ \mathcal{F} \in C_1(\mathbb{C}P^1 \setminus \{\infty\}, (\beta \Delta^2)^\circ; \mathbb{K}) \Leftrightarrow F \in \operatorname{Rep}(\mathsf{Q}) \text{ s.t.}$

• (microlocal rank r = 1) have injections $\ell_i : F(i) = \mathbb{K} \hookrightarrow F(U) = \mathbb{K}^2, \forall i \in \mathbb{Z}/5.$

• (micro-support at the crossings) For all $i \in \mathbb{Z}/5$, the images $[\ell_i] := \operatorname{im}(\ell_i)$ and $[\ell_{i+1}]$ are transverse in $F(U) = \mathbb{K}^2$.

Tao Su, YMSC

Solution with a state of the quotient stack
Solution with a state of the quotient stack

 $\mathfrak{M}_B=\mathfrak{M}_1\big(\mathbb{C} \boldsymbol{P}^1\setminus\{\infty\},(\beta\Delta^2)^\circ;\mathbb{K}\big)$

- $= \{\ell_i : \mathbb{K} \hookrightarrow \mathbb{K}^2, [\ell_i] \neq [\ell_{i+1}], i \in \mathbb{Z}/5\}/(GL_1(\mathbb{K})^5 \times GL_2(\mathbb{K}))$
- $\cong \{[\ell_i] \in \mathbb{P}^1(\mathbb{K}), [\ell_i] \neq [\ell_{i+1}], i \in \mathbb{Z}/5\}/GL_2(\mathbb{K})$

Observe: there is a cell decomposition

 $\mathfrak{M}_B = \sqcup_{\rho \in \mathrm{NR}} \mathfrak{M}_B^{\rho}$

- $= \{ [\ell_0] = [\ell_2] \} \sqcup \{ [\ell_0] = [\ell_3] \} \sqcup \{ [\ell_0] \neq [\ell_2], [\ell_3] \}$
- \cong $\mathbb{K}/\mathbb{G}_m \sqcup \mathbb{K}/\mathbb{G}_m \sqcup (\mathbb{K}^*)^2/\mathbb{G}_m$ (\mathbb{G}_m acts trivially)

イロト イロト イヨト イヨト

$$\rightsquigarrow \mathcal{M}_B = \sqcup_{\rho \in \mathrm{NR}} \mathcal{M}_B^{\rho} = \mathbb{K} \sqcup \mathbb{K} \sqcup (\mathbb{K}^*)^2$$

 $\rightsquigarrow \quad \mathbb{D}\partial\mathcal{M}_B\sim\mathbb{D}\partial(\mathbb{K}^*)^2=S^1.$

Tao Su, YMSC

Solution with a state of the quotient stack
Solution with a state of the quotient stack

 $\mathfrak{M}_B=\mathfrak{M}_1\big(\mathbb{C}P^1\setminus\{\infty\},(\beta\Delta^2)^\circ;\mathbb{K}\big)$

- $= \{\ell_i : \mathbb{K} \hookrightarrow \mathbb{K}^2, [\ell_i] \neq [\ell_{i+1}], i \in \mathbb{Z}/5\}/(GL_1(\mathbb{K})^5 \times GL_2(\mathbb{K}))$
- $\cong \{[\ell_i] \in \mathbb{P}^1(\mathbb{K}), [\ell_i] \neq [\ell_{i+1}], i \in \mathbb{Z}/5\}/GL_2(\mathbb{K})$

Observe: there is a cell decomposition

$$\mathfrak{M}_{\mathcal{B}} = \sqcup_{\rho \in \mathrm{NR}} \mathfrak{M}_{\mathcal{B}}^{\rho}$$

- $= \quad \{[\ell_0] = [\ell_2]\} \sqcup \{[\ell_0] = [\ell_3]\} \sqcup \{[\ell_0] \neq [\ell_2], [\ell_3]\}$
- \cong $\mathbb{K}/\mathbb{G}_m \sqcup \mathbb{K}/\mathbb{G}_m \sqcup (\mathbb{K}^*)^2/\mathbb{G}_m$ (\mathbb{G}_m acts trivially)

$$\rightsquigarrow \mathcal{M}_B = \sqcup_{\rho \in \mathrm{NR}} \mathcal{M}_B^{\rho} = \mathbb{K} \sqcup \mathbb{K} \sqcup (\mathbb{K}^*)^2$$

 $\rightsquigarrow \quad \mathbb{D}\partial\mathcal{M}_B\sim \mathbb{D}\partial(\mathbb{K}^*)^2=S^1.$

Tao Su, YMSC

Solution with a state of the quotient stack
Solution with a state of the quotient stack

 $\mathfrak{M}_{B}=\mathfrak{M}_{1}(\mathbb{C}P^{1}\setminus\{\infty\},(\beta\Delta^{2})^{\circ};\mathbb{K})$

- $= \{\ell_i : \mathbb{K} \hookrightarrow \mathbb{K}^2, [\ell_i] \neq [\ell_{i+1}], i \in \mathbb{Z}/5\}/(GL_1(\mathbb{K})^5 \times GL_2(\mathbb{K}))$
- $\cong \{[\ell_i] \in \mathbb{P}^1(\mathbb{K}), [\ell_i] \neq [\ell_{i+1}], i \in \mathbb{Z}/5\}/GL_2(\mathbb{K})$

Observe: there is a cell decomposition

$$\begin{split} \mathfrak{M}_{B} &= \sqcup_{\rho \in \mathrm{NR}} \mathfrak{M}_{B}^{\rho} \\ &= \{ [\ell_{0}] = [\ell_{2}] \} \sqcup \{ [\ell_{0}] = [\ell_{3}] \} \sqcup \{ [\ell_{0}] \neq [\ell_{2}], [\ell_{3}] \} \\ &\cong \mathbb{K}/\mathbb{G}_{m} \sqcup \mathbb{K}/\mathbb{G}_{m} \sqcup (\mathbb{K}^{*})^{2}/\mathbb{G}_{m} \quad (\mathbb{G}_{m} \text{ acts trivially}) \\ &\rightsquigarrow \mathcal{M}_{B} = \sqcup_{\rho \in \mathrm{NR}} \mathcal{M}_{B}^{\rho} = \mathbb{K} \sqcup \mathbb{K} \sqcup (\mathbb{K}^{*})^{2} \end{split}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ □ ▶

 $\rightsquigarrow \quad \mathbb{D}\partial\mathcal{M}_B\sim \mathbb{D}\partial(\mathbb{K}^*)^2=S^1.$

Tao Su, YMSC

Solution with a state of the quotient stack
Solution with a state of the quotient stack

 $\mathfrak{M}_B=\mathfrak{M}_1\big(\mathbb{C}P^1\setminus\{\infty\},(\beta\Delta^2)^\circ;\mathbb{K}\big)$

- $= \{\ell_i : \mathbb{K} \hookrightarrow \mathbb{K}^2, [\ell_i] \neq [\ell_{i+1}], i \in \mathbb{Z}/5\}/(GL_1(\mathbb{K})^5 \times GL_2(\mathbb{K}))$
- $\cong \{[\ell_i] \in \mathbb{P}^1(\mathbb{K}), [\ell_i] \neq [\ell_{i+1}], i \in \mathbb{Z}/5\}/GL_2(\mathbb{K})$

Observe: there is a cell decomposition

$$\begin{split} \mathfrak{M}_{\mathcal{B}} &= \sqcup_{\rho \in \mathrm{NR}} \mathfrak{M}_{\mathcal{B}}^{\rho} \\ &= \{ [\ell_0] = [\ell_2] \} \sqcup \{ [\ell_0] = [\ell_3] \} \sqcup \{ [\ell_0] \neq [\ell_2], [\ell_3] \} \\ &\cong \mathbb{K}/\mathbb{G}_m \sqcup \mathbb{K}/\mathbb{G}_m \sqcup (\mathbb{K}^*)^2/\mathbb{G}_m \quad (\mathbb{G}_m \text{ acts trivially}) \\ &\rightsquigarrow \mathcal{M}_{\mathcal{B}} = \sqcup_{\rho \in \mathrm{NR}} \mathcal{M}_{\mathcal{B}}^{\rho} = \mathbb{K} \sqcup \mathbb{K} \sqcup (\mathbb{K}^*)^2 \\ &\rightsquigarrow \mathbb{D}\partial \mathcal{M}_{\mathcal{B}} \sim \mathbb{D}\partial (\mathbb{K}^*)^2 = S^1. \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Tao Su, YMSC

- Symplectic field theory: Legendrian knot $\Lambda = \beta^{>} \hookrightarrow J^{1}\mathbb{R}_{x} \rightsquigarrow$ Legendrian contact homology DGA $\mathcal{A}(\Lambda, \overrightarrow{*}) \rightsquigarrow$ augmentation variety Aug $(\Lambda, \overrightarrow{*}; \mathbb{K})$.
- Ng-Rutherford-Shende-Sivek-Zaslow 15: Aug(Λ, →; K) can be lifted to an augmentation category *Aug*₊(Λ; K), and "augmentations are sheaves": *Aug*₊(Λ; K) ≃ C₁(R²_{x,z}, Λ; K).
 → natural surjection Aug(Λ, →; K) → 𝔅₁(R²_{x,z}, β[>]; K).
- Computation shows: for $\Lambda = \beta^{>}$, have natural isomorphism $[\operatorname{Aug}(\beta^{>}, \vec{*}; \mathbb{K})/T] \simeq \mathfrak{M}_{1}(\mathbb{R}^{2}_{x,z}, \beta^{>}; \mathbb{K})$ for some natural action of the torus $T = \mathbb{G}_{m}^{n} \rightsquigarrow \operatorname{Spec} O(\operatorname{Aug}(\beta^{>}, \vec{*}; \mathbb{C}))^{T} \simeq \mathcal{M}_{1}(\beta)$.

- Symplectic field theory: Legendrian knot $\Lambda = \beta^{>} \hookrightarrow J^{1}\mathbb{R}_{x} \rightsquigarrow$ Legendrian contact homology DGA $\mathcal{A}(\Lambda, \overrightarrow{*}) \rightsquigarrow$ augmentation variety Aug $(\Lambda, \overrightarrow{*}; \mathbb{K})$.
- Ng-Rutherford-Shende-Sivek-Zaslow 15: Aug(Λ, *; K) can be lifted to an augmentation category *Aug*₊(Λ; K), and "augmentations are sheaves": *Aug*₊(Λ; K) ≃ C₁(R²_{x,z}, Λ; K).
 → natural surjection Aug(Λ, *; K) → M₁(R²_{x,z}, β[>]; K).
- Computation shows: for $\Lambda = \beta^>$, have natural isomorphism $[\operatorname{Aug}(\beta^>, \overrightarrow{*}; \mathbb{K})/T] \simeq \mathfrak{M}_1(\mathbb{R}^2_{x,z}, \beta^>; \mathbb{K})$ for some natural action of the torus $T = \mathbb{G}_m^n \rightsquigarrow \operatorname{Spec} O(\operatorname{Aug}(\beta^>, \overrightarrow{*}; \mathbb{C}))^T \simeq \mathcal{M}_1(\beta)$.

- Symplectic field theory: Legendrian knot $\Lambda = \beta^{>} \hookrightarrow J^{1}\mathbb{R}_{x} \rightsquigarrow$ Legendrian contact homology DGA $\mathcal{A}(\Lambda, \overrightarrow{*}) \rightsquigarrow$ augmentation variety Aug $(\Lambda, \overrightarrow{*}; \mathbb{K})$.
- Ng-Rutherford-Shende-Sivek-Zaslow 15: Aug(Λ, *; K) can be lifted to an augmentation category *Aug*₊(Λ; K), and "augmentations are sheaves": *Aug*₊(Λ; K) ≃ C₁(R²_{x,z}, Λ; K).
 → natural surjection Aug(Λ, *; K) → M₁(R²_{x,z}, β[>]; K).
- Computation shows: for $\Lambda = \beta^{>}$, have natural isomorphism $[\operatorname{Aug}(\beta^{>}, \overrightarrow{*}; \mathbb{K})/T] \simeq \mathfrak{M}_{1}(\mathbb{R}^{2}_{x,z}, \beta^{>}; \mathbb{K})$ for some natural action of the torus $T = \mathbb{G}_{m}^{n} \rightsquigarrow \operatorname{Spec} O(\operatorname{Aug}(\beta^{>}, \overrightarrow{*}; \mathbb{C}))^{T} \simeq \mathcal{M}_{1}(\beta)$.

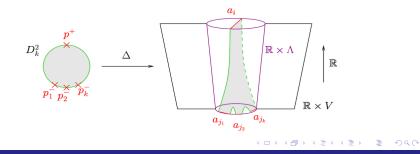
- $\beta^{>}$ is connected \Rightarrow the action of *T* on Aug($\beta^{>}, \overrightarrow{*}; \mathbb{K}$) has constant stabilizer = the diagonal $\mathbb{G}_m \xrightarrow{\Delta} T$. \rightsquigarrow Aug($\beta^{>}; \mathbb{K}$) = Spec $O(Aug(\beta^{>}, \overrightarrow{*}; \mathbb{C}))^T$ is the augmentation variety for the standard LCH DGA $\mathcal{A}(\Lambda)$, and Aug($\beta^{>}; \mathbb{K}$) $\simeq \mathcal{M}_1(\beta)$ is connected smooth affine.
- \exists well-known cell decomposition $\operatorname{Aug}(\beta^{>}; \mathbb{K}) = \sqcup_{\rho \in \operatorname{NR}}(\operatorname{Aug}^{\rho}(\beta^{>}; \mathbb{K}) \cong (\mathbb{K}^{*})^{s(\rho)-n+1} \times \mathbb{K}^{r(\rho)})$ \Rightarrow the same cell decomposition for $\mathcal{M}_{1}(\beta)$.
- ∃!ρ_m in the cell decomposition for M₁(β) s.t. r(ρ_m) = 0 →
 D∂M₁(β) ~ D∂(C*)^{s(ρ_m)-n+1} = S^{dim-1}, by general properties of dual boundary complexes. Done!

- $\beta^{>}$ is connected \Rightarrow the action of *T* on Aug($\beta^{>}, \overrightarrow{*}; \mathbb{K}$) has constant stabilizer = the diagonal $\mathbb{G}_m \xrightarrow{\Delta} T$. \rightsquigarrow Aug($\beta^{>}; \mathbb{K}$) = Spec $O(Aug(\beta^{>}, \overrightarrow{*}; \mathbb{C}))^T$ is the augmentation variety for the standard LCH DGA $\mathcal{A}(\Lambda)$, and Aug($\beta^{>}; \mathbb{K}$) $\simeq \mathcal{M}_1(\beta)$ is connected smooth affine.
- \exists well-known cell decomposition $\operatorname{Aug}(\beta^{>}; \mathbb{K}) = \sqcup_{\rho \in \mathbb{NR}} (\operatorname{Aug}^{\rho}(\beta^{>}; \mathbb{K}) \cong (\mathbb{K}^{*})^{s(\rho)-n+1} \times \mathbb{K}^{r(\rho)})$ \Rightarrow the same cell decomposition for $\mathcal{M}_{1}(\beta)$.
- $\exists ! \rho_m$ in the cell decomposition for $\mathcal{M}_1(\beta)$ s.t. $r(\rho_m) = 0 \rightsquigarrow$ $\mathbb{D}\partial \mathcal{M}_1(\beta) \sim \mathbb{D}\partial (\mathbb{C}^*)^{s(\rho_m)-n+1} = S^{\dim -1}$, by general properties of dual boundary complexes. Done!

- $\beta^{>}$ is connected \Rightarrow the action of *T* on Aug($\beta^{>}, \overrightarrow{*}; \mathbb{K}$) has constant stabilizer = the diagonal $\mathbb{G}_m \xrightarrow{\Delta} T$. \rightsquigarrow Aug($\beta^{>}; \mathbb{K}$) = Spec $O(Aug(\beta^{>}, \overrightarrow{*}; \mathbb{C}))^T$ is the augmentation variety for the standard LCH DGA $\mathcal{A}(\Lambda)$, and Aug($\beta^{>}; \mathbb{K}$) $\simeq \mathcal{M}_1(\beta)$ is connected smooth affine.
- 3 well-known cell decomposition $\operatorname{Aug}(\beta^{>}; \mathbb{K}) = \sqcup_{\rho \in \operatorname{NR}}(\operatorname{Aug}^{\rho}(\beta^{>}; \mathbb{K}) \cong (\mathbb{K}^{*})^{s(\rho)-n+1} \times \mathbb{K}^{r(\rho)})$ \Rightarrow the same cell decomposition for $\mathcal{M}_{1}(\beta)$.
- ∃!ρ_m in the cell decomposition for M₁(β) s.t. r(ρ_m) = 0 →
 D∂M₁(β) ~ D∂(C*)^{s(ρ_m)-n+1} = S^{dim-1}, by general properties of dual boundary complexes. Done!

Legendrian Contact Homology DGAs

SFT: contact pair (V, Λ) → LCH DGA A(V, Λ) with: generators: Reeb chords of Λ; differential: counts holomorphic disks in the symplectization ℝ × V, w/ boundary along the Lagrangian cylinder ℝ × Λ and meeting the Reeb chords at infinity. (see figure below)



Tao Su, YMSC

Htpy type conj.	Moduli of constructible sheaves	Betti moduli spaces ass. to Legendrian knots	(Prove main thm via augmentations)
			00000000

LCH DGAs

Our case: $V = J^1 \mathbb{R}_x$, Λ : Legendrian knot, $\mathcal{A}(\Lambda) = \mathcal{A}(\mathbb{R}^3, \Lambda)$.

Chekanov-Eliashberg: combinatorial description of $\mathcal{R}(\Lambda)$.

Example ($\Lambda = \beta^{>}, \beta = \sigma_{1}^{3}$ and n = 2)

See Figure below, can compute: $\mathcal{A}(\Lambda, \vec{*}) = \mathbb{Z}\langle t_1^{\pm 1}, t_2^{\pm 1}, a_1, a_2, a_3, c_1, c_2 \rangle, |t_i| = 0 = |a_i|, |c_i| = 1, \text{ and}$ $\partial t_i = 0, \partial a_i = 0;$ $\partial c_1 = t_1^{-1} + a_1 + a_3 + a_1 a_2 a_3;$ $\partial c_2 = t_2^{-1} + a_2 + (1 + a_2 a_3) t_1 (1 + a_1 a_2).$ $\mathcal{A}(\Lambda) = \mathcal{A}(\Lambda, \vec{*})|_{t_1=1, t_2=t}.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

Tao Su, YMSC

Htpy type conj.	Moduli of constructible sheaves	Betti moduli spaces ass. to Legendrian knots	(Prove main thm via augmentations)
			00000000

LCH DGAs

Our case: $V = J^1 \mathbb{R}_x$, Λ : Legendrian knot, $\mathcal{A}(\Lambda) = \mathcal{A}(\mathbb{R}^3, \Lambda)$.

Chekanov-Eliashberg: combinatorial description of $\mathcal{R}(\Lambda)$.

Example (
$$\Lambda = \beta^{>}, \beta = \sigma_{1}^{3}$$
 and $n = 2$)

See Figure below, can compute: $\mathcal{A}(\Lambda, \vec{*}) = \mathbb{Z}\langle t_1^{\pm 1}, t_2^{\pm 1}, a_1, a_2, a_3, c_1, c_2 \rangle, |t_i| = 0 = |a_i|, |c_i| = 1, \text{ and}$ $\partial t_i = 0, \partial a_i = 0;$ $\partial c_1 = t_1^{-1} + a_1 + a_3 + a_1 a_2 a_3;$ $\partial c_2 = t_2^{-1} + a_2 + (1 + a_2 a_3) t_1 (1 + a_1 a_2).$ $\mathcal{A}(\Lambda) = \mathcal{A}(\Lambda, \vec{*})|_{t_1 = 1, t_2 = t}.$

Tao Su, YMSC

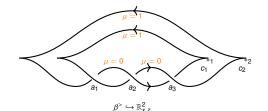


Figure: $\Lambda = \beta^{>} =$ the right-handed Legendrian trefoil knot.

- Additional data: place a base point *_i at each right cusp c_i; Maslov potential μ → ℋ(Λ, *).
- Note: place a single base point at each connected component of Λ → standard LCH DGA ℋ(Λ).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Tao Su, YMSC

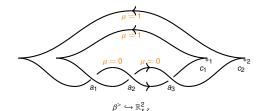


Figure: $\Lambda = \beta^{>} =$ the right-handed Legendrian trefoil knot.

- Additional data: place a base point *_i at each right cusp c_i; Maslov potential μ → ℋ(Λ, *).
- Note: place a single base point at each connected component of Λ → standard LCH DGA A(Λ).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Htpy type conj.	Moduli of constructible sheaves	Betti moduli spaces ass. to Legendrian knots	(Prove main thm via augmentations)
			00000000

Augmentations

Definition

The augmentation variety of $\mathcal{A}(\Lambda, \overrightarrow{*})$ is Aug $(\Lambda, \overrightarrow{*}; \mathbb{K}) := \{\epsilon \mid \epsilon : \mathcal{A}(\Lambda, \overrightarrow{*}) \to \mathbb{K} \text{ is a graded DGA map} \}.$ Similarly: $\mathcal{A}(\Lambda) \rightsquigarrow \operatorname{Aug}(\Lambda; \mathbb{K}).$

Example $(n = 2, \beta = \sigma_1^3)$

For $\Lambda = \beta^{>}$ in the example above, can compute:

$$\operatorname{Aug}(\beta^{>}, \overrightarrow{*}; \mathbb{K}) \cong \{\epsilon(t_{1}, a_{1}, a_{2}, a_{3}) \in \mathbb{K}^{*} \times \mathbb{K}^{3} : \\ \epsilon(t_{1})^{-1} + \epsilon(a_{1}) + \epsilon(a_{3}) + \epsilon(a_{1})\epsilon(a_{2})\epsilon(a_{3}) = 0\}.$$

$$\operatorname{Aug}(\beta^{>}; \mathbb{K}) \cong \{1 + \epsilon(a_{1}) + \epsilon(a_{3}) + \epsilon(a_{1})\epsilon(a_{2})\epsilon(a_{3}) = 0\}.$$

.....

Tao Su, YMSC

Htpy type conj.	Moduli of constructible sheaves	Betti moduli spaces ass. to Legendrian knots	(Prove main thm via augmentations)
			00000000

Augmentations

Definition

The augmentation variety of $\mathcal{A}(\Lambda, \overrightarrow{*})$ is Aug $(\Lambda, \overrightarrow{*}; \mathbb{K}) := \{\epsilon \mid \epsilon : \mathcal{A}(\Lambda, \overrightarrow{*}) \to \mathbb{K} \text{ is a graded DGA map} \}.$ Similarly: $\mathcal{A}(\Lambda) \rightsquigarrow \operatorname{Aug}(\Lambda; \mathbb{K}).$

Example $(n = 2, \beta = \sigma_1^3)$

For $\Lambda = \beta^{>}$ in the example above, can compute:

$$\operatorname{Aug}(\beta^{>}, \overrightarrow{*}; \mathbb{K}) \cong \{\epsilon(t_{1}, a_{1}, a_{2}, a_{3}) \in \mathbb{K}^{*} \times \mathbb{K}^{3} : \\ \epsilon(t_{1})^{-1} + \epsilon(a_{1}) + \epsilon(a_{3}) + \epsilon(a_{1})\epsilon(a_{2})\epsilon(a_{3}) = 0\}.$$

$$\operatorname{Aug}(\beta^{>}; \mathbb{K}) \cong \{1 + \epsilon(a_{1}) + \epsilon(a_{3}) + \epsilon(a_{1})\epsilon(a_{2})\epsilon(a_{3}) = 0\}.$$

Tao Su, YMSC

Augmentations vs sheaves via example: $n = 2, \beta = \sigma_1^3$

■ ∃ natural action of $T = \mathbb{G}_m^2$ on $\operatorname{Aug}(\beta^>, \overrightarrow{*}; \mathbb{K})$: $(\overrightarrow{\lambda} \cdot \epsilon)(t_1, a_2) = \lambda_2^{-1} \epsilon(t_1, a_2)\lambda_1, (\overrightarrow{\lambda} \cdot \epsilon)(t_2, a_1, a_3) = \lambda_1^{-1} \epsilon(t_2, a_1, a_3)\lambda_2,$ $\forall \overrightarrow{\lambda} = (\lambda_1, \lambda_2) \in T, \epsilon \in \operatorname{Aug}(\Lambda, \overrightarrow{*}; \mathbb{K}).$

■ Recall $\mathfrak{M}_1(\beta) = [\{[\ell_i] \in \mathbb{P}^1(\mathbb{K})^5 | [\ell_i] \neq [\ell_{i+1}], \forall i \in \mathbb{Z}/5\}/GL_2(\mathbb{K})] \Rightarrow$

$$\mathfrak{M}_{1}(\beta) \cong [\{[\ell_{0}] = [0:1], [\ell_{1}] = [1:0], [\ell_{i}] \neq [\ell_{i+1}]\}/\mathbb{G}_{m}^{2}] \\ \cong [\{x + z + xyz \neq 0\}/\mathbb{G}_{m}^{2}]^{1} \\ \cong [\operatorname{Aug}(\beta^{>}, \overrightarrow{*}; \mathbb{K})/T]^{2}$$

 $\cong [\{1 + x + z + xyz = 0\}/\mathbb{G}_m] (\mathbb{G}_m \text{ acts trivially})$

Tao Su, YMSC

Augmentations vs sheaves via example: $n = 2, \beta = \sigma_1^3$

■ ∃ natural action of
$$T = \mathbb{G}_m^2$$
 on $\operatorname{Aug}(\beta^>, \overrightarrow{*}; \mathbb{K})$:
 $(\overrightarrow{\lambda} \cdot \epsilon)(t_1, a_2) = \lambda_2^{-1} \epsilon(t_1, a_2) \lambda_1, (\overrightarrow{\lambda} \cdot \epsilon)(t_2, a_1, a_3) = \lambda_1^{-1} \epsilon(t_2, a_1, a_3) \lambda_2,$
 $\forall \overrightarrow{\lambda} = (\lambda_1, \lambda_2) \in T, \epsilon \in \operatorname{Aug}(\Lambda, \overrightarrow{*}; \mathbb{K}).$
■ Recall $\mathfrak{M}_1(\beta) = [\{[\ell_i] \in \mathbb{P}^1(\mathbb{K})^5] | \ell_i] \neq [\ell_{i+1}], \forall i \in \mathbb{Z}/5\}/GL_2(\mathbb{K})] \Rightarrow$

$$\mathfrak{M}_{1}(\beta) \cong [\{[\ell_{0}] = [0:1], [\ell_{1}] = [1:0], [\ell_{i}] \neq [\ell_{i+1}]\}/\mathbb{G}_{m}^{2}] \\ \cong [\{x + z + xyz \neq 0\}/\mathbb{G}_{m}^{2}]^{1} \\ \cong [\operatorname{Aug}(\beta^{>}, \vec{*}; \mathbb{K})/T]^{2} \\ \cong [\{1 + x + z + xyz = 0\}/\mathbb{G}_{m}] (\mathbb{G}_{m} \text{ acts trivially})$$

Tao Su, YMSC

Cell decomposition via example: $n = 2, \beta = \sigma_1^3$

• \Rightarrow Good moduli space:

 $\mathcal{M}_1(\beta) \cong \{1 + x + z + xyz = 0\} \cong \operatorname{Aug}(\beta^{>}; \mathbb{C}), d = \dim = 2.$

Cell decomposition:

 $\operatorname{Aug}(\beta^{>}; \mathbb{C})$

- $= \sqcup_{\rho \in \mathrm{NR}} \mathrm{Aug}^{\rho}(\beta^{>}; \mathbb{C})$
- $= \{x = 0, 1 + xy \neq 0\} \sqcup \{x \neq 0, 1 + xy = 0\} \sqcup \{x \neq 0, 1 + xy \neq 0\}$
- $= \mathbb{C} \sqcup \mathbb{C} \sqcup (\mathbb{C}^*)^2$
- $= \{ [\ell_0] = [\ell_2] \} \sqcup \{ [\ell_0] = [\ell_3] \} \sqcup \{ [\ell_0] \neq [\ell_2], [\ell_3] \}$
- $= \mathcal{M}_1(\beta).$

Dual boundary complexes:

 $\mathbb{D}\partial \mathcal{M}_1(\beta) = \mathbb{D}\partial \mathrm{Aug}(\beta^{>}; \mathbb{C}) \sim {}^3\mathbb{D}\partial \mathrm{Aug}^{\rho_m}(\beta^{>}; \mathbb{C}) = \mathbb{D}\partial (\mathbb{C}^*)^2 = S^1.$

 3 Simp 16: $U \subset X$ open dense, $Z := X \setminus U \cong \mathbb{A}^1 \times Y$, then $\mathbb{D}_{\partial X} \sim \mathbb{D}_{\partial U, \Xi}$, $\Xi \sim \mathfrak{I}_{\mathcal{A}}$

Tao Su, YMSC

Cell decomposition via example: $n = 2, \beta = \sigma_1^3$

• \Rightarrow Good moduli space:

 $\mathcal{M}_1(\beta) \cong \{1 + x + z + xyz = 0\} \cong \operatorname{Aug}(\beta^{>}; \mathbb{C}), d = \dim = 2.$

Cell decomposition:

 $\operatorname{Aug}(\beta^{>}; \mathbb{C})$

- $= \ \sqcup_{\rho \in \mathrm{NR}} \mathrm{Aug}^{\rho}(\beta^{>}; \mathbb{C})$
- $= \{x = 0, 1 + xy \neq 0\} \sqcup \{x \neq 0, 1 + xy = 0\} \sqcup \{x \neq 0, 1 + xy \neq 0\}$
- $= \mathbb{C} \sqcup \mathbb{C} \sqcup (\mathbb{C}^*)^2$
- $= \{ [\ell_0] = [\ell_2] \} \sqcup \{ [\ell_0] = [\ell_3] \} \sqcup \{ [\ell_0] \neq [\ell_2], [\ell_3] \}$
- $= \mathcal{M}_1(\beta).$

Dual boundary complexes:

 $\mathbb{D}\partial\mathcal{M}_1(eta)=\mathbb{D}\partial\mathrm{Aug}(eta^{\scriptscriptstyle{>}};\mathbb{C})\sim {}^3\mathbb{D}\partial\mathrm{Aug}^{
ho_m}(eta^{\scriptscriptstyle{>}};\mathbb{C})=\mathbb{D}\partial(\mathbb{C}^*)^2=S^1.$

 3 Simp 16: $U \subset X$ open dense, $Z := X \setminus U \cong \mathbb{A}^1 \times Y$, then $\mathbb{D}_{\partial}X \sim \mathbb{D}_{\partial}U$. If $\mathcal{D}_{\mathcal{A}} = \mathcal{D}_{\mathcal{A}}$

Tao Su, YMSC

Cell decomposition via example: $n = 2, \beta = \sigma_1^3$

• \Rightarrow Good moduli space:

 $\mathcal{M}_1(\beta) \cong \{1 + x + z + xyz = 0\} \cong \operatorname{Aug}(\beta^{>}; \mathbb{C}), d = \dim = 2.$

Cell decomposition:

 $\operatorname{Aug}(\beta^{>}; \mathbb{C})$

$$= \ \sqcup_{\rho \in \mathrm{NR}} \mathrm{Aug}^{\rho}(\beta^{>}; \mathbb{C})$$

$$= \{x = 0, 1 + xy \neq 0\} \sqcup \{x \neq 0, 1 + xy = 0\} \sqcup \{x \neq 0, 1 + xy \neq 0\}$$

 $= \quad \mathbb{C} \sqcup \mathbb{C} \sqcup (\mathbb{C}^*)^2$

$$= \{ [\ell_0] = [\ell_2] \} \sqcup \{ [\ell_0] = [\ell_3] \} \sqcup \{ [\ell_0] \neq [\ell_2], [\ell_3] \}$$

$$= \mathcal{M}_1(\beta).$$

Dual boundary complexes:

 $\mathbb{D}\partial\mathcal{M}_1(\beta)=\mathbb{D}\partial\mathrm{Aug}(\beta^{\scriptscriptstyle >};\mathbb{C})\sim {}^3\mathbb{D}\partial\mathrm{Aug}^{\rho_m}(\beta^{\scriptscriptstyle >};\mathbb{C})=\mathbb{D}\partial(\mathbb{C}^*)^2=S^1.$

³Simp 16: $U \subset X$ open dense, $Z := X \setminus U \cong \mathbb{A}^1 \times Y$, then $\mathbb{D}\partial X \sim \mathbb{D}\partial U$.

Tao Su, YMSC

Htpy type conj.	Moduli of constructible sheaves	Betti moduli spaces ass. to Legendrian knots	(Prove main thm via augmentations)
00000000	000000	0000	00000000

Thanks!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ □ ● ● ● ●

Tao Su, YMSC